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Enumeration of chemical compounds has been accomplished by various methods. The Polya-Redfield theorem 
has been a standard method for combinatorial enumerations of graphs, polyhedra, chemical compounds, and 
so forth. In this paper by using the computer algebra system GAP we compute the number of isomers of an 
infinite class of nanohorns with C2 point group symmetry. 
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1. Introduction 
 
Carbon exists in several forms in nature. One is the 

so-called nanotube which was discovered for the first time 
in 1991. Unlike carbon nanotubes, carbon nanohorns can 
be made simply without the use of a catalyst [1,2]. The tips 
of these short nanotubes are capped with pentagonal faces; 
see Fig. 1. Let p, h, n and m be the number of pentagons, 
hexagons, carbon atoms and bonds between them, in a 
given nanohorn H. Then one can see that 
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and the number of faces is f = p + h. By the Euler’s 
formula n − m + f = 2, one can deduce that p = 5 and 
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Fig. 1. 2-D and 3- D graph of nanohorn H. 
 
Detecting symmetry of molecules is a well-studied 

problem with applications in a large number of areas. 
Randic [3,4] and then Balasubramanian [5,6] considered 
the Euclidean matrix of a chemical graph to find its 
symmetry. Here the Euclidean matrix of a molecular graph 
G is a matrix D(G) = [dij], where for i ≠ j, dij is the 
Euclidean distance between the nuclei i and j. In this 
matrix dii can be taken as zero if all the nuclei are 
equivalent. Otherwise, one may introduce different 
weights for different nuclei.  

Suppose σ is a permutation on n atoms of the 
molecule under consideration. Then the permutation 
matrix Pσ is defines as Pσ = [xij], where xij = 1 if i = σ(j) 
and 0 otherwise. It is easy to see that PσPτ = Pστ, for any 
two permutations σ and τ on n objects, and so the set of all 
n × n permutation matrices is a group isomorphic to the 
symmetric group Sn on n symbols. It is a well-known fact 
that a permutation σ of the vertices of a graph G belongs 
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to its automorphism group if it satisfies Pσ
tAPσ = A, where 

A is the adjacency matrix of G. So, for computing the 
symmetry of a molecule, it is sufficient to solve the matrix 
equation PtEP = E, where E is the Euclidean matrix of the 
molecule under consideration and P varies on the set of all 
permutation matrices with the same dimension as E. 

Mathematically the isomer counting of poly-
substituted nanohorn is essentially the same as that of 
hetero-fullerene.7,8 In this paper by a similar way we 
compute number of isomers of an infinite families of 
nanohorns. 

 
2. Main result and discussion 
 
Groups are often used to describe symmetries of 

objects. This is formalized by the notion of a group action.  
Let G be a group and X a nonempty set. An action of G on 
X is denoted by GX and X is called a G-set. It induces a 
group homomorphism ϕ from G into the symmetric group 
SX on X, where ϕ(g)x = gx for all x ∈ X. The orbit of x will 
be denoted by Gx and defines as the set of all ϕ(g)x, g ∈ 
G. The set of all G-orbits will be denoted by G\\X : = { Gx 
| x ∈ X}. Suppose g is a permutation of n symbols with 
exactly λ1 orbits of size 1, λ2 orbits of size 2, …, and λn 
orbits of size n. Then the cycle type of g is defined as 

1 21 2 ... .nnλλ λ  
We now introduce the notion of cycle index. Let G be 

a permutation group. The cycle index of G acting on X is 
the polynomial Z(G, X) over Q in terms of indeterminates 
x1, x2, …, xt, t = |X|, defined by Z(G, X) = 
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G ∈ =∑ ∏  in which (c1(p), ···, ct(p)) is the 

cycle type of the permutation p ∈ G. The generalized 
character cycle index is defined as 
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χ(g) is the linear character of the irreducible representation 
of G.  

Enumeration of chemical compounds has been 
accomplished by various methods. The Polya-Redfield 
theorem has been a standard method for combinatorial 
enumerations of graphs, polyhedra, chemical compounds, 
and so forth. Combinatorial enumerations have found a 
wide-ranging application in chemistry, since chemical 
structural formulas can be regarded as graphs or three-
dimensional objects.  

Denote by Cm,n the set of all functions f: {1, 2, …, 
m}→ {x1, x2, ..., xn}. The action of p ∈  Sm  induced on 
Cm,n is defined by p̂ (f) = fop-1, f ∈  Cm,n. Treating the 
colors x1, x2, …, xn that comprise the range of f ∈ Cm,n as, 
independent variables the weight of f is W(f) = 

1
( )m

i
f i

=∏ . Evidently, W(f) is a monomial of (total) 

degree m. Suppose G is a permutation group of degree 
m, Ĝ ={ p̂ :p∈G}, p̂  is as defined above. Let p1, p2, 

…, pt be representatives of the distinct orbits of Ĝ . The 

weight of pi is the common value of W(f), f ∈  pi. The sum 
of the weights of the orbits is the pattern inventory 

WG(x1,x2,…,xn)= 1
( )t

ii
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Theorem.1 (Pólya's Theorem9) If G is a subgroup of 

Sm, the symmetry group on m symbols, then the pattern 
inventory for the orbits of Cm,n modula Ĝ  is  
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where Mk = x1

k+x2
k+…+xn

k is the kth power sum of the x’s. 
To enumerate all possibilities of the hetero-nanohorns 

structures, we have to consider the symmetry group to 
enumerate the number of chiral isomers, see [10] for more 
details.  

From the above discussion our problem is reduced to 
the coloring of the corresponding nanohorn graph with 

2 22 41n r r= + +  vertices. Consider the molecular 
graph of the nanohorn H, see Fig. 1 for the case of r = 8. 
By using GAP software [11], one can see that the 
symmetry group H of these fullerenes is isomorphic to the 
group C2 of order 2. Thus the cycle index of H is computed 
as  

2 222 41 1 ( 21 40)/2
1 1 2Z(H, X) ( ) / 2.r r r r rx x x+ + + + += +  

But from the cycle indices one can compute the 
number of possible positional isomers, the number of 
chiral isomers under the symmetry group C2, see [12-15].  

In what follows we prepare a GAP program to 
compute the number of possible positional isomers for H. 
We mention here that our computations of symmetry 
properties and cycle indices of molecules were carried out 
with the use of GAP. This software was constructed by the 
GAP team in Aachen. In Table 1, we apply this program to 
compute the number of possible positional isomers for the 
case of r = 4, Fig. 2. 

 
 

Fig. 2. Nanohorn H for the case of r = 4. 
 



H. Mesgarani, M. Ghorbani 

 
1266

 
 
 

 
 
 

A Gap Program for counting the number of nanohorn H. 
 

f:=function(n) 
local s,i,f,x,t; 

x:=Indeterminate(Rationals,"x"); 
f:=((1+x)^(89)+(1+x)^5*(1+x^2)^(42))/2; 
t := CoefficientsOfLaurentPolynomial(f); 

Print("***************************************************","\n"); 
Print("\n"); 
Print("Number of Molecules for Symmetry Group =","\n"); 

for i in t[1] do 
Print(i,"\n"); 

od; 
Print("**************************************************","\n"); 

return; 
end;  

Table 1. The number of H89-kBk  molecules. 
 

k,89 -k Number of H89−kBk molecules for symmetry group 
0,89 
1,88 
2,87 
3,86 
4,85 
5,84 
6,83 
7,82 
8,81 
9,80 

10,79 
11,78 
12,77 
13,76 
14,75 
15,74 
16,73 
17,72 
18,71 
19,70 
20,69 
21,68 
22,67 
23,66 
24,65 
25,64 
26,63 
27,62 
28,61 
29,60 
30,59 
31,58 
32,57 
33,56 
34,55 
35,54 
36,53 
37,52 
38,51 
39,50 
40,49 
41,48 
42,47 
43,46 
44,45 

1 
47 

1984 
56892 

1221456 
20756184 

290563644 
3445167312 
35312741949 
317813975539 

2542510116752 
18259840795912 
118688954831096 
703003784422072 
3816306205549832 

19081530912625424 
88252080242700895 
378964814703449873 

1515859257963982160 
5664526699240696204 
19825843444588399064 
65142057027473837360 

201348176258905833868 
586535991698093381120 
1612973977150092969259 
4193732340560438311493 

10323033453643439331136 
24087078058438832974432 
53335672843599223614176 
112188829084695301825888 
224377658169237491264096 
427041349418676753435712 
774012445821111101559914 

1336930588236176461627382 
2202003321800426034874816 
3460290934257434856293432 
5190436401385740907480896 
7434949439822385325514640 
10174141338703878921425976 
13304646365996955576915552 
16630807957495803542747490 
19875843656519036615151870 
22715249893164345209272800 
24828296394853866796169520 
25956855321892585506612240 
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